Resonant Cavity Enhanced Detectors (RCEDs)

place the absorber inside the cavity at an antinode of the standing wave pattern:

- peak wavelength λ_p determined by optical length
- narrow spectral width (given by Q of resonator)

many passes across absorber :

- quantum efficiency $\eta \rightarrow 1$
- thin absorber: high D*

(small g-r volume!)

IV-VI (lead chalcogenide) RCED on Si-substrate

Top Pb-layer forms

- top mirror
- metal-semiconductor blocking contact: photovoltaic detector

IV-VI RCED

IV-VI RCED realization:

MBE on Si-substrate

--> detector design: one resonance visible only because of:

- choice of cut-off wavelength
- choice of bandgap of mirror materials

Measured reflection(RT):

η(λ) **FWHM** 35% 0.037 µm ~ 0.8 % 0.25 **95K** 0.20 30 % 30% 0.15 25% η 0.10 20 % 20% 0.05 η **η** 15% 0.00 -0.05 10 % 10% 2.5 3.0 3.5 4.0 4.5 5.0 λ [µm] 5% 0% 0 %

4.2

 λ [µm]

4.3

-5%

3.9

4.0

4.1

RCED with Pb_{0.97}Eu_{0.03}Se-absorber, measured quantum efficiency:

ETH Zürich Thin Film Physics Group

4.5

4.4

