Optically pumped lead-chalcogenide infrared-emitters on Si-substrates

Klaus Kellermann, Karim Alchalabi, Dmitri Zimin, <u>Hans Zogg</u> Thin Film Physics Group, Swiss Federal Institute of Technology, Zurich

a) on Si(100): Epi lift-off and cleave

a) laser results on Si(100), cleaved mirrors

ETH Zürich Thin Film Physics Group

limited power of pump-diode: lasing up to 250 K

a) on Si(111): no cleaved mirrors

dry-etched mirrors for PbSe-based DH & QW laser structures on Si(111)

3 lasers with different cavity lengths etched in one substrate

detail of a back Bragg mirror with two $\lambda/4$ grooves for very high reflectivity

a) laser results on Si(111), etched mirrors

Thin Film Physics Group

a) DH-structure on Si(111), etched mirrors

Thin Film Physics Group

a) Specifications: optically pumped IV-VI mid-IR lasers (preliminary):

Material: PbX/PbEuX (X = Se, Te), grown by MBE on Si-substrate

Structure: Edge emitter, length of resonator e.g. 300 µm (matched to width of pump-source) Width of resonator: given by pump source (no lateral delineation needed)

Crystallographic orientation, Resonant mirrors and mount:

grown on Si(100): (100)-orientation, epitaxial lift-off, cleaved mirrors, mount on heat-sink grown on Si(111): (111)-orientation, etched mirrors, heat-sink=Si-substrate

Wavelength range: with PbSe QWs: ca. 3 - 6 μ m

given by design (width of the QWs) and temperature.

longer wavelengths up to 30 µm: with PbSnSe QWs (in preparation)

wavelength tuning:

- by temperature

ca. 2 x 10⁻³ /K (change of band-gap with T), ca. 3 x 10⁻⁴/K (for fixed mode, mainly T-dependence of refractive index)

- by mechanical movement:

move laser bar with slightly varying thickness of QWs with respect to pump laser

Excitation: low cost laser-diode with e.g. 870 nm wavelength

(focusing: Use a lens, or just place the IV-VI laser structure near (within e.g. 30 µm) the pump laser exit face.

Emission power: up to 200 mW_n (tested at 4-5 μ m wavelength)

Operation temperature:

Presently up to 250K (with pump power of 5 W_p), larger T with larger pump powers In preparation: Optimising laser structure for lowest threshold near or at RT

b) on Si(111): Resonant cavity mid-IR-source (at RT) = VCSEL operated in sub-threshold

Thin Film Physics Group

Thin Film Physics Group

b) Specifications: "Wavelength-transformer" (preliminary):

Material: PbX/PbEuX (X = Se, Te), grown by MBE on Si(111)-substrate

Structure: 8/2 cavity, Bragg mirror pairs n x (HL) bottom (exit side), m x (hL) top (entrance side)

Excitation: low cost laser-diode with wavelength at e.g. 870 nm

Wavelength range: with PbSe QWs: ca. 3 - 6 μm determined by design (widths of the QW) longer wavelengths up to 30 μm: with PbSnSe QW (in preparation)

Operating temperature: RT Temperature coefficient: ca. 3 x 10⁻⁴/K

Linewidth: 0.2% to 7 %, depending on design (finesse of cavity) example: HL 2H LhLh Structure (see slide): 5.5% (exp. and calc.)

Efficiency: ca. 10⁻⁴ (for HL 2H LhLh structure), exp. higher values probable (by optimizing materials quality)

Linewidths & efficiencies for differently designed Bragg mirrors (with still higher reflections):

Excit mirror	entrance mirror	line-width	increase of efficiency
number of HL-pairs	number of Lh-pairs		
1	2	5.5%	x 1
2	3	1.3%	
2	4	1.0%	x 7
3	3	0.5%	
3	4	0.2%	x 40

b) Application: Resonant cavity mid-IR-source (at RT)

