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Mid-IR devices with epitaxial IV-VI narrow-gap semiconductor layers

F. Felder, M. Fill, M. Rahim, A. Khiar, and H. Zogg

By employing epitaxial narrow gap lead chalcogenide (IV-VI) layers, it was possible to realize mid-IR VECSEL (vertical external cavity surface emitting laser)
and RCED (resonant cavity enhanced detector) for the first time. The materials are grown by solid source molecular beam epitaxy (MBE) onto Si(111)-substrates
by employing a CaFs buffer layer. Despite the huge lattice and thermal expansion mismatch between the materials, device quality layers result. This is because
lead-chalcogenides are fault tolerant. Typical compositions of the active mid-IR layers include Pb1-xSnxX, Pb1-xEuxX and Pb1-xSrxX (X=Te, Se). They allow
to realize devices in the < 3um up to > 10pm wavelength range by choosing appropriate compositions x. In addition, extremely high reflectivity Bragg mirrors
are needed to realise such devices. Such epitaxial Bragg mirrors with very high reflectivity over a broad spectral range are again easily obtained with IV-VI
materials. The mirrors consist of quarter wavelength layers with alternating high and low refractive indices. Due to the high index contrast, a few pairs only
suffice.

Vertical External Cavity Surface Emitting Laser (VECSEL) on Si

A recent lay out consists mainly of a 800 nm thick PbTe active layer grown on a Si-substrate. It is followed by a 3 % pair Bragg mirror and soldered on a Cu
heat sink. The opposite curved mirror is again of Bragg type and serves as output coupler. Pumping is done optically with a commercial 1.55 pm wavelength
laser diode. The device operates up to room temperature. At 100 K heat sink temperature, output power is above 1 W in pulsed mode, and 20 mW in continous
wave (cw). Compared to the well known edge-emitting quantum cascade lasers (QCL) which consist of several hundred interfaces, the lay-out of our VECSELs
is extremely simple. In addition, VECSEL exhibit a very good beam quality (emission in a 1°circular cone). This is in contrast to QCLs where the wide angle
astigmatic beam requires elaborate optical beam conditioning for most applications.

A=35-5 um T T T T T 20
12 -cample 1, 10kHz, 100ns ~ T=-172°C _- sample 1, CW i
poegl = = T=-168°C u
Top mirror - ﬁ- L i
R>99% { or 1+ . 15
Pb.93Eu.06Te\BaF2 A= 1.55 um s s
< 08+ E E
Z 05| =
2 - 2
& N = 410 3
L 06w . o
i 3 5
2 o T=-127°C =3
l ’ [e] = PR = aatud 3
| Si substrate = L 1s
Active region . PbTe (830 nm)
Bottom mirror -~ EuTe
R>99.9% Pb.97Sr.03Te L 0
— Indium 0 10 20 0.00 0.25 0.50 0.75 1.00
Absorbed Pump Power (W) Absorbed Pump Power (W)
Copper a) b)

Figure 4.6: Schematic representation of a PbTe-based IV-VI VECSEL realized on a Si-substrate. The curved Bragg mirror is used as output
coupler (left). Light-in/light-out characteristics at different temperatures (right) in pulsed mode (a) and cw (b).

We currently work on further improvements:

e diamond heat-spreaders will allow room temperature cw operation

e using short cavities (L < 1004m), monomode operation results. The wavelength is continuously tunable by slightly changing L with piezo-drivers
across a range of up to 10%

e using quantum well structures in the active layers, threshold powers will decrease considerably
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Figure 4.7: Normalized PbTe based VECSEL-on-Si lasing spectra at different heat sink temperatures

Resonant cavity enhanced detector (RCED)

Collaboration with the Center of Mechanics, ETH Zurich (J. Dual, S. Blunier, N. Quack), www.zfm.ethz.ch

A resonant cavity enhanced detector (RCED) is an embedded absorber layer within a Fabry-Perot cavity. The RCED is sensitive mainly at the resonance
wavelengths, where it exhibits a high quantum efficiency. By changing the cavity length, wavelength tuning is possible. We realized RCEDs with movable
MEMS micromirrors. They operate in the 3 to 7 m range using different compositions of the absorber layer. A typical total tunable range is 0.5  for a specific

device.
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Figure 4.8: Schematics of a RCED (top left), micromirror (top right), and measured spectra for different MEMS actuation voltages (left)



